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Abstract
Extensive research during last two decades has revealed the mechanism by which continued
oxidative stress can lead to chronic inflammation, which in turn could mediate most chronic
diseases including cancer, diabetes, cardiovascular, neurological and pulmonary diseases.
Oxidative stress can activate a variety of transcription factors including NF-κB, AP-1, p53,
HIF-1α, PPAR-γ, β-catenin/Wnt, and Nrf2. Activation of these transcription factors can lead to the
expression of over 500 different genes, including those for growth factors, inflammatory
cytokines, chemokines, cell cycle regulatory molecules, and anti-inflammatory molecules. How
oxidative stress activates inflammatory pathways leading to transformation of a normal cell to
tumor cell, tumor cell survival, proliferation, chemoresistance, radioresistance, invasion,
angiogenesis and stem cell survival is the focus of this review. Overall, observations to date
suggest that oxidative stress, chronic inflammation, and cancer are closely linked.
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1. Introduction
Oxidative stress is defined as an imbalance between production of free radicals and reactive
metabolites, so-called oxidants or reactive oxygen species (ROS), and their elimination by
protective mechanisms, referred to as antioxidants. This imbalance leads to damage of
important biomolecules and cells, with potential impact on the whole organism [1]. ROS are
products of a normal cellular metabolism and play vital roles in stimulation of signaling
pathways in plant and animal cells in response to changes of intra- and extracellular
environmental conditions [2]. Most ROS are generated in cells by the mitochondrial
respiratory chain [3]. During endogenous metabolic reactions, aerobic cells produce ROS
such as superoxide anion (O2

-), hydrogen peroxide (H2O2), hydroxyl radical (OH•), and
organic peroxides as normal products of the biological reduction of molecular oxygen [4].
The electron transfer to molecular oxygen occurs at the level of the respiratory chain, and
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the electron transport chains are located in membranes of the mitochondria [5,6]. Under
hypoxic conditions, the mitochondrial respiratory chain also produces nitric oxide (NO),
which can generate other reactive nitrogen species (RNS) [3]. RNS can further generate
other reactive species, e.g., reactive aldehydes-malondialdehyde (MDA) and 4-
hydroxynonenal (4-HNE), by inducing excessive lipid peroxidation [7]. Proteins and lipids
are also significant targets for oxidative attack, and modification of these molecules can
increase the risk of mutagenesis [8].

Under a sustained environmental stress, ROS are produced over a long time, and thus
significant damage may occur to cell structure and functions and may induce somatic
mutations and neoplastic transformation [9,10]. Indeed, cancer initiation and progression has
been linked to oxidative stress by increasing DNA mutations or inducing DNA damage,
genome instability, and cell proliferation [11].

The skin, for example, is chronically exposed to both endogenous and environmental pro-
oxidants due to its interface function between the body and the environment, and to protect
the skin against this overload of oxidant species, it needs a well-organized system of both
chemical and enzymatic antioxidants [12]. The lungs, which are directly exposed to oxygen
concentrations higher than in most other tissues, are protected against these oxidants by a
variety of antioxidant mechanisms [13]. Furthermore, aging, which is considered as an
impairment of body functions over time, caused by the accumulation of molecular damage
in DNA, proteins and lipids, is also characterized by an increase in intracellular oxidative
stress due to the progressive decrease of the intracellular ROS scavenging [14]. Acting to
protect the organism against these harmful pro-oxidants is a complex system of enzymatic
antioxidants [e.g., superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione
reductase, catalase] and nonenzymatic antioxidants [e.g., glutathione (GSH), vitamins C and
D] [15] (Figure 1).

ROS are involved in a wide spectrum of diseases, including chronic inflammation (Table 1),
and in a wide variety of different cancers (Table 2).

Chronic inflammation is induced by biological, chemical, and physical factors and is in turn
associated with an increased risk of several human cancers [54]. The link between
inflammation and cancer has been suggested by epidemiological and experimental data
[55,56] and confirmed by anti-inflammatory therapies that show efficacy in cancer
prevention and treatment [57]. The fact that continuous irritation over long periods of time
can lead to cancer had already been described in the traditional Ayurvedic (meaning, the
science of long life) medical system, written as far back as 5000 years ago [58]. Whether
this irritation is the same as what Rudolf Virchow referred to as inflammation in the
nineteenth century is uncertain [59]. Virchow first noted that inflammatory cells are present
within tumors and that tumors arise at sites of chronic inflammation [60]. This inflammation
is now regarded as a “secret killer” for diseases such as cancer. For example, inflammatory
bowel diseases such as Crohn's disease and ulcerative colitis are associated with increased
risk of colon adenocarcinoma [61-63], and chronic pancreatitis is related to an increased rate
of pancreatic cancer [64].

The exact mechanisms by which a wound-healing process turns into cancer are topics of
intense research [57,65], and possible mechanisms include induction of genomic instability,
alterations in epigenetic events and subsequent inappropriate gene expression, enhanced
proliferation of initiated cells, resistance to apoptosis, aggressive tumor neo-vascularization,
invasion through tumor-associated basement membrane, and metastasis [66]. How oxidative
stress modulates these different stages of inflammation-induced carcinogenesis is the focus
of this review.
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2. Inflammatory network
The sources of inflammation are widespread and include microbial and viral infections,
exposure to allergens, radiation and toxic chemicals, autoimmune and chronic diseases,
obesity, consumption of alcohol, tobacco use, and a high-calorie diet [60,67]. In general, the
longer the inflammation persists, the higher the risk of cancer. Two stages of inflammation
exist, acute and chronic inflammation. Acute inflammation is an initial stage of
inflammation (innate immunity), which is mediated through the activation of the immune
system. This type of inflammation persists only for a short time and is usually beneficial for
the host. If the inflammation lasts for a longer period of time, the second stage of
inflammation, or chronic inflammation, sets in and may predispose the host to various
chronic illnesses, including cancer [68]. During inflammation, mast cells and leukocytes are
recruited to the site of damage, which leads to a ‘respiratory burst’ due to an increased
uptake of oxygen, and thus, an increased release and accumulation of ROS at the site of
damage [7,65].

On the other hand, inflammatory cells also produce soluble mediators, such as metabolites
of arachidonic acid, cytokines and chemokines, which act by further recruiting inflammatory
cells to the site of damage and producing more reactive species. These key mediators can
activate signal transduction cascades as well as induce changes in transcription factors, such
as nuclear factor kappa B (NF-κB), signal transducer and activator of transcription 3
(STAT3), hypoxia-inducible factor-1α (HIF1-α), activator protein-1 (AP-1), nuclear factor
of activated T cells (NFAT) and NF-E2 related factor-2 (Nrf2), which mediate immediate
cellular stress responses (Figure 2). Induction of cyclooxygenase-2 (COX-2), inducible
nitric oxide synthase (iNOS), aberrant expression of inflammatory cytokines [tumor necrosis
factor (TNF), interleukin-1 (IL-1), IL-6 and chemokines [IL-8; CXC chemokine receptor 4
(CXCR4)], as well as alterations in the expression of specific microRNAs, have also been
reported to play a role in oxidative stress-induced inflammation [69]. This sustained
inflammatory/oxidative environment leads to a vicious circle, which can damage healthy
neighboring epithelial and stromal cells and over a long period of time may lead to
carcinogenesis [70].

As an example, mutations in the rat sarcoma viral oncogene (RAS) induce an inflammatory
response. RAS, which is mutated in approximately 25% of all malignancies [71], promotes
cell proliferation, tumor growth, and angiogenesis of malignant cells. During inflammatory
stimuli, Ras induces the expression of various inflammatory gene products, including the
pro-inflammatory cytokines IL-1, IL-6 and IL-11 and the chemokine IL-8 [72].

3. Pro-oxidant network
Following an inflammatory stimulus, initiation of carcinogenesis mediated by ROS may be
direct (oxidation, nitration, halogenation of nuclear DNA, RNA, and lipids), or mediated by
the signaling pathways activated by ROS. With the help of the mitochondrial respiratory
chain, aerobic organisms are able to attain a far greater energy production efficiency
compared with anaerobic organisms. However, one disadvantage of aerobic respiration is
continuous electron leakage to O2 during mitochondrial ATP synthesis. In fact, 1–5% of
total oxygen consumed in aerobic metabolism gives rise to the superoxide anion (O2

-), an
example of ROS. To protect against this free radical, the main enzyme for its degradation,
the manganese-superoxide dismutase (Mn-SOD), dismutates it into H2O2 and water [73].

H2O2, another example of ROS, may be formed either by dismutation from superoxide
anion or spontaneously in peroxisomes from molecular oxygen [74-76]. Despite its lesser
reactivity compared with other ROS, H2O2 plays however an important role in
carcinogenesis because it is capable of diffusing throughout the mitochondria and across cell
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membranes and producing many types of cellular injury [74,75]. The main injurious effects
of ROS in mammalian cells are however mediated by the hydroxyl radical (·OH). It has a
very unstable electron structure and is therefore unable to diffuse more than one or two
molecular diameters before it reacts in practice with any cellular component [76,77]. The
majority of ·OH in vivo is produced in the presence of reduced transition metals (ions of Fe,
Cu, Co, or Ni), mainly via the Fenton reaction when Fe2+ contacts H2O2. The ·OH-derived
DNA damage includes the generation of 8-hydroxyguanosine (8-OHG), the hydrolysis
product of which is 8-hydroxydeoxyguanosine (8-OHdG). 8-OHdG is the most widely used
fingerprint of radical attack towards DNA [77,78]. 8-OHdG has been strongly implicated in
carcinogenesis progression. For example, in breast carcinomas, 8-OHdG has been reported
to be increased 8- to 17-fold in breast primary tumors compared with nonmalignant breast
tissue [79-81].

NO·, another free radical implicated in carcinogenesis, is a short-lived free radical generated
from L-arginine [82], that is effective against pathogens. The major part of NO· is
synthesized by iNOS, usually after challenge by immunological or inflammatory stimuli
[82,83]. NO is synthesized from -arginine by the enzyme nitric oxide synthase (NOS). The
constitutive (calcium-dependent) isoforms, neuronal NOS (nNOS or bNOS) and endothelial
NOS (eNOS), produce small amounts of NO which act as a neurotransmittor and
vasodilator, respectively [84]. The inducible (calcium-independent) isoform (iNOS)
produces much larger amounts of NO and is only expressed during inflammation. Whereas
iNOS can produce injurious amounts of RNS (check), eNOS and nNOS produce beneficial
amounts under physiological conditions [85]. iNOS is induced by cytokines such as γ-
interferon (γ-IFN), TNF-α, IL-1, and lipopolysaccharide (LPS). LPS activation induces the
translocatation of NF-κB, from the cytoplasm to the nucleus, where it interacts with κB
elements in the NOS2 (iNOS) 5′ flanking region, triggering NOS2 transcription [86].

Defective autophagy of old mitochondria (mitophagy) can also be a major source of ROS
[87]. These ROS produced by damaged mitochondria, can promote tumor development,
likely by perturbing the signal transduction adaptor function of p62-controlling pathways
[88].

To control the balance between production and removal of ROS (Figure 3), a variety of
DNA repair enzymes exist, although antioxidants are more specific and efficient in
protecting cells from radicals. This antioxidant system includes both endogenous and
exogenous and enzymatic and non-enzymatic antioxidants. Glutathione (GSH), is a
tripeptide and the major endogenous antioxidant produced by the cells, which helps to
protect cells from ROS such as free radicals and peroxides [89]. It is now well established
that ROS and electrophilic chemicals can damage DNA, and that GSH can protect against
this type of damage [90]. GSH can also directly detoxify carcinogens through phase II
metabolism and subsequent export of these chemicals from the cell. On the other hand,
elevated GSH levels are observed in various types of cancerous cells and solid tumors, and
this tends to make these cells and tissues more resistant to chemotherapy [91-93].

SODs were the first characterized antioxidant enzymes [94]. Three different types of SOD
are expressed in human cells, copper-zinc SOD (Cu-ZnSOD), Mn-SOD, and extracellular-
SOD (EC-SOD), all of which are able to dismutate two O2

·- anions to H2O2 and molecular
oxygen. Catalase is then responsible for detoxification of H2O2 to water. GPx are another
group of enzymes capable of reducing hydroperoxides, including lipid hydroperoxides,
using GSH as substrate. The oxidized form of glutathione disulfide (GSSG) is again reduced
by the specific enzyme glutathione reductase. Peroxiredoxins (Prx) were first described 20
years ago and as in catalase and GPx, the main function of peroxiredoxins is to reduce alkyl
hydroperoxides and H2O2 to the corresponding alcohol or water.
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Direct effects of ROS, generally attributed to high concentrations at the site of damage,
include DNA strand breaks, point mutations, aberrant DNA cross-linking, and mutations in
proto-oncogenes and tumor-suppressor genes, thus promoting neoplastic transformation
[7,95]. For example, ROS can reduce the expression and enzymatic activity of the DNA
mismatch repair genes mutS homologue 2 and 6 and can increase the expression of DNA
methyltransferases, leading to a global hypermethylation of the genome [60]. This leads to
promoter silencing of several genes, such as adenomatous polyposis coli (APC), cyclin-
dependent kinase inhibitor-2 (CDKN-2), breast cancer susceptibility gene 1 (BRCA1),
retinoblastoma protein (Rb), and murine double minute 2 (MDM2), and the DNA mismatch
repair gene, human mutL homolog 1 (hMLH1) [96,97].

On the other hand, low or transient levels of ROS can activate cellular proliferation or
survival signaling pathways, such as the NF-κB, AP1, extracellular signal-regulated kinase/
mitogen-activated protein kinase (ERK/MAPK), and phosphoinositide 3- kinase/AKT8 virus
oncogene cellular homolog (PI3K/Akt) pathways (Table 3).

For example, H2O2 is able to degrade IκBα, the inhibitory subunit of NF-κB [137]. Protein
kinase C, which participates in a variety of pathways regulating transcription and cell cycle
control, is also activated by H2O2 [137]. In addition, ROS induces both the activation and
synthesis of AP-1, a regulator of cell growth, proliferation, and apoptosis [138,139] and
transcription factors such as STAT3, HIF-1α, and p53 [118,140,141].

4a. Cellular transformation
Chronic inflammation has been linked to various steps involved in carcinogenesis, including
cellular transformation, promotion, survival, proliferation, invasion, angiogenesis, and
metastasis [65,142]. How oxidative stress is involved in these various steps is discussed in
the following sections.

Cancer is a multistage process defined by at least three stages: initiation, promotion, and
progression [143-145]. Oxidative stress interacts with all three stages of this process. During
the initiation stage, ROS may produce DNA damage by introducing gene mutations and
structural alterations of the DNA. In the promotion stage, ROS can contribute to abnormal
gene expression, blockage of cell- to cell communication, and modification of second
messenger systems, thus resulting in an increase of cell proliferation or a decrease in
apoptosis of the initiated cell population. Finally, oxidative stress may also participate in the
progression stage of the cancer process by adding further DNA alterations to the initiated
cell population [146].

In recent years, considerable evidence has demonstrated that ROS are involved in the link
between chronic inflammation and cancer [147-149]. Indeed, an important characteristic of
tumor promoters is their ability to recruit inflammatory cells and to stimulate them to
generate ROS [150,151]. Tumor promotion, for example, can be inhibited in animal models
by the use of agents, including certain antioxidants as well as steroids and retinoids, that can
inhibit the phagocyte respiratory burst [148,150]. Moreover, increased levels of oxidatively
modified DNA bases (such as thymidine glycol, 5-hydroxymethyl-2′-deoxyuridine and 8-
OHdG) have been induced in the skin of mice by topical phorbol 12-myristate 13- acetate
(PMA) exposure [152]. 8-OHdG has also been identified in the epidermis of nude mice
exposed to near-UV [153]. In addition, genetic damage and neoplastic transformation have
been demonstrated in cells co-cultured in vitro with activated phagocytes [149] and the
genotoxic effects observed include formation of DNA strand breaks [151], sister chromatid
exchange [154] and mutations [155]. Furthermore, the DNA base modifications observed
are characteristic of an attack by reactive oxygen species OH. [156]. Inflammatory cells may
also increase DNA damage by activating procarcinogens to DNA-damaging species, for
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example neutrophils can activate aromatic amines, aflatoxins, estrogens, phenols, and
polycyclic aromatic hydrocarbons by ROS-dependent mechanisms [148,157]. On the other
hand, both neutrophils and macrophages have themselves been shown to release large
quantities of superoxide, hydrogen peroxide, and hydroxyl radical following activation of
their redox metabolism [158].

In fact, initial experiments on the role of ROS in tumor initiation have assumed that
oxidative stress acts as a DNA-damaging agent, effectively increasing the mutation rate
within cells and thus promoting oncogenic transformation [159]. However, more recent
studies have revealed that in addition to inducing genomic instability, ROS can specifically
activate certain signaling pathways and thus contribute to tumor development through the
regulation of cellular proliferation, angiogenesis, and metastasis [160]. For example,
nitrosative stress has been shown to play a critical role in inflammation-associated
carcinogenesis by activating AP-1, a representative redox-sensitive transcription factor
[161], which is involved in cell transformation and proliferation [139,162].

4b. Tumor cell survival
One of the key characteristics of tumor cells is their increased ability to survive compared
with normal cells. ROS are reported to be tumorigenic by virtue of their ability to increase
cell proliferation, survival, and cellular migration. ROS can induce DNA damage, leading to
genetic lesions that initiate tumorigenicity and subsequent tumor progression. On the other
hand, ROS can also induce cellular senescence and cell death and can therefore function as
anti-tumorigenic agents. Whether ROS promote tumor cell survival or act as anti-
tumorigenic agents depends on the cell and tissues, the location of ROS production, and the
concentration of individual ROS.

ROS has been reported to play a major role in tumor initiation and survival induced by a
variety of agents both in animal models and humans [158,163,164] by mediating cellular
signal transduction pathways. These signaling pathways are involved in the transmission of
inter or intracellular information and are critical for supporting tumor cell survival and
establishing cell fate. The reduced nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase (Nox) family of enzymes, one of the potential sources of ROS production, has been
reported to promote tumor cell survival and growth [165]. For example, Nox4 and Nox5
promote tumor cell survival in pancreatic and lung cancers, respectively [165]. The serine-
threonine kinase Akt has been reported to down-regulate antioxidant defenses and promote
tumor cell survival [166]. ROS has also been reported to activate Akt by inhibiting
phosphatase and tensin homolog deleted from chromosome 10 (PTEN), the phosphatase
counteracting PI3K-dependent Akt activation [167]. Akt may foster tumorigenesis by
multiple means [168,169], for example, by stabilizing cellular avian myeloblastosis virus
oncogene (c-Myc) and cyclin D1 or by inducing degradation of the cyclin-dependent kinase
(Cdk) inhibitor, p27 kinase inhibitor protein (p27Kip1). Akt is also a profound inhibitor of
apoptosis due to its ability to inactivate pro-apoptotic molecules, including caspase-9 and the
Bcl-2 homology3 (BH3)-only protein Bcl-XL/Bcl-2-associated death promoter (Bad), and
by triggering the activity of the transcription factor NF-κB. In addition, Akt promotes
nuclear translocation of the ubiquitin ligase MDM2, which counteracts p53-mediated
apoptosis. An important aspect of Akt's promotion of cell survival involves alterations in
cellular energy metabolism [168,169]. Thus, by preventing apoptosis and increasing
oxidative metabolism, Akt lies at the hub of complex signaling networks that integrate a
multitude of potentially oncogenic signals.
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4c. Tumor cell proliferation
Uncontrolled tumor cell proliferation requires the upregulation of multiple intracellular
signaling pathways including cascades involved in survival, proliferation, and cell cycle
progression. The most significant effects of oxidants on signaling pathways have been
observed in the mitogen-activated protein (MAP) kinase/AP-1 and NF-κB pathways [170].
The induction of redox-sensitive pathways during tumor cell proliferation is necessary since
cell division presents tremendous energy requirements and the production of metabolites
from energy-generating reactions must be buffered to prevent oxidative damage and
ultimately cell death [171].

Of the MAP kinase family, which modulates gene expression through phosphorylation of a
wide array of transcription factors, the ERK pathway is the most commonly linked with the
regulation of cell proliferation. Activation of the ERK, c-Jun N-terminal kinase (JNK), and
p38 subfamilies has been observed in response to changes in the cellular redox balance
[172]. The induction of AP-1 by H2O2, cytokines, and other stressors, for example, is
mediated mainly by JNK and p38 MAP kinase cascades [173]. Once activated, JNK proteins
translocate to the nucleus and phosphorylate c-Jun and activating transcription factor-2
(ATF-2), enhancing transcriptional activities [174,175]. H2O2 can activate MAP kinases and
thereby AP-1 in several manners.

Redox status has also been shown to have an impact on NF-κB regulation. NF-κB regulates
several genes involved in cell transformation, proliferation, and angiogenesis [176].
Carcinogens and tumor promoters including UV radiation, phorbol esters, asbestos, alcohol,
and benzo(a)pyrene are among the external stimuli that activate NF-κB [177,178].
Expression of NF-κB has been shown to promote cell proliferation, whereas inhibition of
NF-κB activation blocks cell proliferation [179]. Additionally, tumor cells from blood
neoplasms, and cell lines from different cancers, including colon, breast, pancreas, and
squamous cell carcinoma, have all been reported to constitutively express activated NF-κB
[180]. The mechanism for activation of NF-κB by ROS is not clear, and the relationship
between NF-κB and ROS is complex [123]. Although mild oxidative stress can lead to
modest NF-κB activation, extensive oxidative stress can inhibit NF-κB [123]. Furthermore,
NF-κB can protect cells from oxidative stress through induction of the ferritin heavy chain
and SOD2 genes, which are both regulated by NF-κB [181,182]. On the other hand, ROS are
believed to be implicated as second messengers involved in activation of NF-κB via TNF
and IL-1 [183] and indeed, suppression of TNF and IL-1 were shown to downregulate the
expression of active NF-κB and inhibit proliferation of lymphoma and myelogenous
leukemia cells [184]. The importance of ROS on NF-κB activation is further supported by
studies demonstrating that activation of NF-κB by nearly all stimuli can be blocked by
antioxidants, such as L-cysteine, N-acetylcysteine (NAC), thiols, green tea polyphenols, and
vitamin E [185,186], although this might be not very specific because antioxidants have
multiple targets [187]. Likewise, NF-κB activity was increased in cells that overexpressed
SOD and decreased in cells overexpressing catalase [188].

Kinases, such as protein kinase C (PKC) can also be activated by H2O2 and redox cycling
quinones [189,190]. Similarly, H2O2 leads to the activation of protein kinase B/Akt (PKB/
Akt), which is associated with heat shock protein 27 (Hsp27) [191].

That ROS such as H2O2 and superoxide anion induce mitogenesis and cell proliferation has
now been demonstrated in several mammalian cell types [192]; and a reduction in cellular
oxidants via supplementation with antioxidants such as superoxide dismutase, catalase, β-
carotene, and flavonoids inhibits cell proliferation in vitro [193]. However, paradoxically
high concentrations of ROS can trigger apoptotic or necrotic cell death [194-196].
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4d. Tumor cell invasion
Oxygen radicals may augment tumor invasion and metastasis by increasing the rates of cell
migration. During transformation into invasive carcinoma, epithelial cells undergo profound
alterations in morphology and adhesive mode, resulting in a loss of normal epithelial
polarization and differentiation, and a switch to a more motile, invasive phenotype. For
example, treatment of mammalian carcinoma cells with hydrogen peroxide prior to
intravenous injection into mice enhances lung metastasis formation, indicating that an
important function for ROS is the seeding of metastatic tumor cells [197]. This might be due
to a decreased attachment of tumor cells to the basal lamina, or alternatively be due to the
increased activity or expression of proteins that regulate cellular motility. For instance,
oxidative stress regulates the expression of intercellular adhesion protein-1 (ICAM-1), a cell
surface protein in endothelial and epithelial cells, most likely due to the activation of NF-κB.
ICAM-1 together with IL-8 regulates the transendothelial migration of neutrophils and has a
potential function in tumor metastasis [198].

On the other hand, it is believed that the matrix metalloproteinases (MMPs) play the central
role, and their increased expression reportedly is associated with the invasion and metastasis
of malignant tumors of different histogenetic origins [199]. For example, Mori et al. found
that MMP-13, MMP-3, and MMP-10 were remarkably upregulated by the oxidant directly,
and their activities were critically implicated in the invasive potential induced in NMuMG
cells in the reconstituted model [200]. Another subgroup of MMPs, gelatinases (MMP-2 and
-9), which are key enzymes for degrading type IV collagen and are thought to play a critical
role in tumor invasion and metastasis [199], were also found to be activated post-
transcriptionally by prolonged oxidative treatment. These effector molecules activated under
prolonged oxidative stress relate chronic inflammation to malignant transformation, in
particular to the invasive potential of cells, at least at a molecular level.

MMPs are capable of cleaving most components of the basement membrane and
extracellular matrix [201]. The activation of MMPs, such as MMP-2, probably occurs by the
reaction of ROS with thiol groups in the protease catalytic domain [202]. In additional to
their role as key regulators of MMP activation, ROS have been implicated in MMP gene
expression [203]. Both hydrogen peroxide and nitric oxide donors, as well as the increased
expression of iNOS, stimulate the expression of several MMPs (MMP-1, MMP-3, MMP-9,
MMP-10, MMP-13) [203]. In fibroblastic cells, the sustained production of H2O2 recently
was shown to activate MMP-2 and to increase cell invasion [204]. Oxidative stress may also
modulate MMP expression by activation of the rat sarcoma viral oncogene (RAS), or direct
activation of the MAPK family members extracellular-signal regulated kinase 1/2 (ERK1/2),
p38, and JNK, or inactivation of phosphatases that regulate these proteins [160].

In addition, several studies have reported the involvement of chemokines and chemokine
receptors in the invasion and metastasis of different types of tumors [205-208]. The
metastatic potential of chemokines is attributed to their ability to induce the expression of
MMPs, which facilitate tumor invasion [208,209]. Moreover, silencing of endogenous
CXCR4 gene expression by CXCR4-shRNA inhibited the proliferation, adhesion,
chemotaxis and invasion of mucoepidermoid carcinoma cells [210]. In addition, recent data
point to a role for the small guanosine triphosphatase Rac1 (GTPase Rac1) in motility and
invasion of tumor cells in vitro by altering cell-cell and cell-matrix adhesion. For example,
Rac1 activity induces ROS production in endothelial cells. These ROS can mediate Rac1-
induced loss of cell-cell adhesion in primary human endothelial cells and thus might loosen
the integrity of the endothelium [211].

It is becoming clear that a number of steps in the metastatic cascade, such as invasion,
intravasation and extravasation are regulated by redox signaling [212]. One such redox
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signalling molecule is the electrophilic cyclopentenone prostaglandin 15d-PGJ2 (15-
deoxy-12,14 -prostaglandin J2), an inflammatory molecule [213], that can affect redox
signalling through the post-translational modification of critical cysteine residues in
proteins, such as actin, vimentin and tubulin [214,215]. The fact that 15d-PGJ2 can alter the
cytoskeleton [212], may coincides with decreased migration and increased focal-adhesion
disassembly, that might have important implications in the inhibition of metastatic processes
such as invasion, intravasation and extravasation. These results suggest a role for redox
signalling pathways, rather than direct cytoskeletal disruption, in the mechanism of 15d-
PGJ2 in cancer cells.

Finally, Cheng et al demonstrated that ROS enhance the transendothelial migration (TEM)
of melanoma cells during intravasation, and that this mechanism could potentially be
triggered by ultraviolet radiation through the increased expression of thioredoxin interacting
protein (Txnip) and inhibition of thioredoxin (Trx) [216].

4e. Tumor cell angiogenesis
Solid tumors induce an angiogenic response by the host blood vessels to form a new
vascular network for the supply of nutrients and oxygen [217]. This neovascular response is
partly responsible for tumor growth and metastatic spread [218,219]. Angiogenesis in
tumors is controlled by the so-called ‘angiogenic switch,’ which allows the transition from
low invasive and poorly vascularized tumors to highly invasive and angiogenic tumors. To
further increase in size, tumor cells express a set of molecules that initiate tumor
vascularization.

A number of cellular stress factors, including hypoxia, nutrient deprivation, and ROS, are
important stimuli of angiogenic signaling [220]. In addition, overexpression of Ras has been
linked to vascularization of tumors [221]. Indeed, transformation by Ras stabilizes HIF-1α
and upregulates the transcription of vascular endothelial growth factor-A (VEGF-A).
Moreover, chemical antioxidants inhibit the mitogenic activity of Ras, indicating that ROS
participate directly in malignant transformation. Finally, ROS stabilize HIF-1α protein and
induce production of angiogenic factors by tumor cells [222].

The HIF system plays a significant role in angiogenesis, and the molecular mechanisms of
its regulation have recently been characterized. In addition, HIF-independent mechanisms
that involve a number of other molecules and transcription factors such as NF-κB and p53
have been described. p53 may interact with the HIF system but may also have direct effects
on angiogenesis regulators or interfere with translation mechanisms of angiogenesis factors

One other major factor in angiogenesis is vascular endothelial growth factor (VEGF), which
is produced by the cells to stimulate the growth of new blood vessels. VEGF induces
angiogenesis by stimulating endothelial cell proliferation and migration primarily through
the receptor tyrosine kinase VEGF receptor2, fetal liver kinase 1/ kinase insert domain
receptor (Flk1/KDR). VEGF binding initiates tyrosine phosphorylation of KDR, which
results in activation of downstream signaling enzymes including ERK1/2, Akt and
endothelial nitric oxide synthase (eNOS), which contribute to angiogenic-related responses
in endothelial cells [134]. A number of oncogenes and tumor-suppressor genes that are
normally associated with cell transformation [(RAS, c-Myc, murine sarcoma 3611 oncogene
(RAF), human epidermal growth factor receptor-2 (HER-2/neu), c-Jun, and steroid receptor
coactivator (SRC)] regulate angiogenesis through upregulation of VEGF or downregulation
of thrombospondin-1 (TSP-1), an angiogenesis suppressor [223,224]. Furthermore, mutated
p53 upregulates VEGF and in contrast, wild-type p53 decreases VEGF production and
increases TSP-1 [225]. Angiogenic factors such as VEGF, fibroblast growth factor (FGF)
and platelet-derived growth factor (PDGF) are released into the tumor microenvironment by
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tumor or inflammatory cells in response to various stimuli, such as ROS [226]. The released
growth factors activate endothelial cells that give rise to new blood vessels [227,228].

Monte et al. have demonstrated that lymphocyte-induced angiogenesis is triggered by ROS
stimulation, and that this response can be blocked by the administration of a free radical
scavenger to tumor bearing mice [229] [230]. In addition, the administration of H2O2 or an
oxidative stress-producing drug (doxorubicin) to normal mice activated in vivo angiogenesis
[229].

Due to reduced physiological tissue oxygen tension (hypoxia), which occurs during tumor
initiation, tumors often become hypoxic. Under hypoxic conditions, cells activate signaling
pathways, which regulate proliferation, angiogenesis, and death. Cancer cells have adapted
to these pathways, effectively allowing tumors to survive and even grow under adverse
hypoxic conditions [160]. This adaptation of tumor cells to hypoxia contributes to the
malignant phenotype and to aggressive tumor progression [231], and low oxygen tension in
tumors is associated with increased metastasis and poor survival of patients with several
forms of squamous tumor [232,233]. HIF-1α responds to these changes by specifically
decreasing the oxygen (or hypoxia) level, and upregulating several genes to promote
survival in low-oxygen conditions and thus promoting angiogenesis.

In conclusion, although previous sections indicate that all different sub-stages of tumor
development are affected by ROS and inflammation, early stages of cancer development
(e.g. cellular transformation), involving DNA damage, are however most affected by ROS
generated inflammation. For example, colitis may develop into colon cancer after
inflammatory infiltration, increased production of ROS, impairment of antioxidant defenses,
DNA damage, and genetic and epigenetic alterations, resulting in the transformation of
epithelial cells [234]. Or, bronchitis, which can lead to lung cancer, clearly links pro-
oxidants, generated by cigarette smoke, to inflammation of the bronchus, and eventually
transformation of lung cells into lung cancer [235]. Similarly pancreatitis and esophagitis,
both induced by tobacco and alcohol, may transform normal tissue into pancreatic or
esophageal cancer if the antioxidant system is not sufficiently effective [236,237].

4f. Chemoresistance
Despite many decades of research, the mechanisms underlying chemoresistance are still
poorly understood. There is growing evidence that the inflammatory tumor
microenvironment modulates not only cancer development but also cancer responsiveness
and resistance to conventional anticancer therapies [238]. Experimental studies have led to
the identification of various cancer cell-intrinsic resistance mechanisms, e.g., activation and/
or overexpression of drug transporter proteins (e.g., P-glycoprotein), altered expression of
detoxifying enzymes (e.g., glutathione S-transferase) or resistance to apoptosis/senescence
pathways [239-242].

For example, an inflammatory response induces changes in expression and activity of
multidrug-resistance (MDR)-associated protein transporters, greatly affecting drug
responses [243,244]. It has been shown that acute inflammation suppresses the drug
transporter P-glycoprotein (PGP) in the liver, whereas it activates PGP in kidneys, resulting
in changes in the pharmacokinetics of the PGP substrate doxorubicin [245]. Likewise,
expression of multidrug resistance-associated protein 1 (MRP1) is elevated in inflamed
intestine of patients with Crohn's disease or ulcerative colitis [246]. Thus, enhanced states of
inflammation influence proteins that are strongly linked with drug resistance.

In addition to the effects caused by inflammation, several chemotherapeutic agents have also
been shown to activate the transcription factor NF-κB in human lung and cervical cancers
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and in T cells [247-249]. These agents are paclitaxel, vinblastine, vincristine, doxorubicin,
daunomycin, 5-fluorouracil, cisplatin, and tamoxifen. Activation of NF-κB by these agents
has been linked in turn with chemoresistance through serine phosphorylation of inhibitor of
κBα (IκBα) [250,251]. Various in vitro studies have supported a link between NF-κB
activation, cytokine production and chemoresistance. One pathway via which NF-κB can be
activated is the Toll-like receptor (TLR) pathway. TLRs generally signal via the adapter
protein myeloid differentiation primary response gene 88 (MyD88) leading to activation of
NF-κB and production of pro-inflammatory cytokines. Activation of TLR signaling in
ovarian cancer cell lines by exogenously added LPS resulted in an activated NF-κB
pathway, which promoted secretion of proinflammatory cytokines and subsequently
conferred resistance to paclitaxel [252,253]. Also, TNF receptor signaling promotes NF-κB
activation and has been linked with chemoresistance. For example, exposure of breast
cancer cells to exogenously added TNFα results in selection for breast cancer cells that
overexpress NF-κB, leading to increased cancer cell survival and resistance to ionizing
radiation [254]. At the same time, cytokines produced by stromal cells in the tumor
microenvironment (e.g., IL-1 or TNFα) could potentially activate the NF-κB pathway in
cancer cells and thus contribute to chemoresistance. These data call for functional in vivo
studies to elucidate the involvement of the inflammatory tumor microenvironment in NF-
κB-dependent chemoresistance.

Another mechanism that might be involved in chemoresistance is increased levels of GSH in
cancer cells [92]. In particular, the overexpression of glutathione S-transferases (GST), the
enzymes that catalyse the conjugation of reduced glutathione to electrophilic [255], as well
as efflux pumps, may reduce the reactivity of various anticancer drugs [256]. The increase
of the GST levels occurs by transcriptional activation mediated by the nuclear factor-
erythroid 2 p45-related factor 2 (Nrf2) [257]. Indeed, using genetic manipulation, Lau et al.
have demonstrated a strong positive correlation between Nrf2 levels and resistance of three
cancer cell lines to chemotherapeutic drugs such as cisplatin, doxorubicin, and etoposide
[258]. Chemical activation of Nrf2 by pretreatment with tertiary-butylhydroquinone (tBHQ)
also increased survival of neuroblastoma cells in response to the three drugs tested [259].
Consistent with these findings, the role of Nrf2 in determining efficacy of cisplatin was also
demonstrated in ovarian cancer cells using siRNA knockdown of Nrf2 [260]. Moreover,
many kelch-like ECH-associated protein 1 (Keap1) mutations or loss of heterozygosity in
the Keap1 locus have been identified in lung cancer cell lines or cancer tissues [261,262].
Keap1 mutations or loss of heterozygosity resulted in inactivation of Keap1 or a reduced
expression of Keap1, which upregulated the protein level of Nrf2 and transactivation of its
downstream genes [261,262]. Similar to Nrf2, the protective effect of heme oxygenase-1
(HMOX-1, or HO-1) in normal cells may protect from oxidative stress-related diseases.
However, such an effect is undesirable in cancer because it provides a selective advantage
for cancer cells to survive. Consistent with this notion, HMOX-1 has been found to be
overexpressed in various tumor types. It is believed that overexpression of HMOX-1
facilitates cancer cell growth and survival in many ways, such as stimulating rapid growth of
cancer cells, enhancing cancer cell resistance to stress and apoptosis, promoting
angiogenesis of tumors, and aiding in metastasis of tumors [263]. In addition to HMOX-1,
other Nrf2-downstream genes such as Prx1, GPx, and thioredoxin reductase (TrxR) were
also upregulated in many cancer cells or tissues and may contribute to chemoresistance
[264-266]. In ovarian cancer, constitutive activation of ERK activity has been associated
with high tumorigenicity and chemoresistance [267,268]. In addition, functional analyses
employing knockdown of MKP3, a member of the subfamily of protein tyrosine
phosphatases known as dual-specificity phosphatases (MKPs) [269,270], and ectopic
overexpression revealed the role of MKP3 in negatively regulating ERK1/2 activity and
inhibiting tumorigenicity and chemoresistance in vitro and in vivo. MKP3 is capable of
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dephosphorylating ERK1/2 by protein-protein interactions via mitogen-activated protein
kinase interaction motif within the N-terminal ERK1/2-binding domain [271].

4g. Radioresistance
Acquired tumor radioresistance can be induced during radiotherapy owing to tumor
repopulation [272]. Although tumor radioresistance stands as a fundamental barrier limiting
the effectiveness of radiation therapy, the exact molecular mechanisms underlying the
radioadaptive response are largely unknown (Figure 4). Olivieri et al. [273] first described
an adaptive response of human lymphocytes to ionizing radiation. Since then, a substantial
number of reports have made a strong case for the existence of cellular radioprotective
mechanisms that can be activated in response to a small dose of ionizing radiation. It is
assumed that a specific pro-survival signaling network is induced in irradiated mammalian
cells.

The elevated basal NF-κB activity in certain cancers has been linked with tumor resistance
to chemotherapy and radiation [274]. NF-κB in adaptive radioresistance is evidenced in
mouse epidermal cells [275] and human keratinocytes, and inhibition of NF-κB blocks the
adaptive radioresistance [275]. Human breast cancer cells treated with fractional γ-
irradiation show an enhanced clonogenic survival and NF-κB activation [276,277]. Blocking
NF-κB inhibited the adaptive radioresistance. These results provide the first evidence that
activation of NF-κB is required for signaling the radio-adaptive resistance by exposure to
radiation. Together with the assumption that NF-κB is able to regulate more than 150
effector genes, these results suggest that NF-κB plays a key role in tumor radioadaptive
resistance under fractional ionizing radiation. Furthermore, in a study [278] that
immunocytochemically examined the levels of activated NF-κB protein in pretreatment
cancer specimens and in resected specimens of patients with chemoradiotherapy resistance,
the cancers expressed higher levels of cytoplasmic NF-κB than did the adjacent
nonmalignant mucosa. Furthermore, Sandur et al. suggest that transient inducible NF-κB
activation provides a prosurvival response to radiation that may account for the development
of radioresistance [279].

On the other hand, hypoxia is a principal signature of the tumor microenvironment and is
considered to be the most important cause of clinical radioresistance and local treatment
failure. The response of cells to ionizing radiation is strongly dependent upon oxygen, which
is traditionally explained by the “oxygen fixation hypothesis” [280]. Oxygen is so far the
best radiosensitizer. De Ridder et al. demonstrated that iNOS, activated by pro-inflammatory
cytokines, can radiosensitize tumor cells through endogenous production of NO [280]. They
further observed that this radiosensitizing effect is transcriptionally controlled by hypoxia
and by NF-κB. Consistently, NF-κB inhibition has been used as an approach to
radiosensitize tumor cells, aiming at stimulating apoptosis and inhibiting DNA repair.
Moreover, the inflammatory mediators TNFα and NO have been repeatedly used as targets
to radiosensitize tumor cells [281-285].

4h. Stem cell survival
Cancer stem cells (CSCs) are cancer cells that have the ability to generate tumors through
the processes of self-renewal and differentiation into multiple cells. Such cells persist in
tumors as a distinct population and cause relapse and metastasis by giving rise to new
tumors. The existence of CSCs may have several implications in cancer treatment, including
disease identification, selection of drug targets, prevention of metastasis, and development
of new intervention strategies.
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The first conclusive evidence for CSCs was published in 1997 [286], and to date CSCs have
been isolated from both leukemias and a variety of solid tumors, including breast, brain,
pancreatic, prostrate, ovary, and colon cancers [287-293]. The pathways that regulate self-
renewal of CSCs include wint (Wnt), Notch, Hedgehog, and tumor-suppressor genes such as
PTEN and TP53 (tumor protein 53) [294]. Although redox balance plays an important role
in the maintenance of stem cell self-renewal and in differentiation, redox status in CSCs has
yet to be explored. However, given the similarity between normal stem cells and CSCs and
the fact that redox status plays an important role in cancer cell development, it is tempting to
speculate that redox status may have a role in CSC survival. A recent study by Diehn et al.
demonstrated that, similar to normal stem cells, subsets of CSCs in human and murine breast
tumors have lower ROS levels than do the corresponding non-tumorigenic cells [295]. The
group further showed that lower levels of ROS were associated with increased free radical
scavenging systems and that pharmacologic depletion of these scavengers significantly
decreased clonogenicity and resulted in radiosensitization of CSCs. Additionally, two
studies showed that CD133+ CSCs conferred chemoresistance to cisplatin and doxorubicin
(known ROS generators) in ovarian cancer cells [296] and hepatocellular carcinoma [297],
respectively. These studies further indicate that redox status may be important in
maintaining CSC survival.

4i. Stromal cell signaling
Cancer progression must involve both genetic and behavioral changes in cancer cells, and
these changes are in part driven by the cancer-associated stromal cells and tumor
microenvironment [298,299]. The stromal component of the normal prostate epithelium, for
example, consists of smooth muscle, fibroblasts, vascular endothelial cells, nerve cells,
inflammatory cells, insoluble matrix, and soluble factors [300]. Studies by De Marzo et al.
highlight the role of inflammation in prostate cancer, suggesting that atrophic lesions are an
early event in prostate carcinogenesis [301]. The macrophages in the tumor
microenvironment produce ROS and RNS. The resulting increases in superoxide (O2

-),
hydrogen peroxide (H2O2), hydroxyl radical, and free iron damage DNA, causing genetic
mutations and initiating cancer progression. Tissue and cell recombination studies
demonstrate the important regulatory role of fibromuscular stroma and stromal fibroblasts in
prostate development and prostate carcinogenesis [300]. Cancer cells and stromal cells
interact through physical contact or through soluble factors or insoluble extracellular matrix
(ECM) factors. These stromal fibroblasts, which interact with cancer cells, have increased
levels of brain-derived neurotropic factor, chemokines, CC chemokine ligand 5 (CCL5) and
CXC chemokine lix 5 (CXCL5), versican, tenascin, connective tissue growth factor, stromal
cell derived factor-1/ CXC chemokine ligand 12 (SDF-1/CXCL12), and HIF-1α [302].
Other studies have demonstrated the role of stromal soluble factors interacting with
receptors on prostate cancer cells. The stromal factors include VEGF, bFGF, hepatocyte
growth factor/ scatter factor (HGF/SF), transforming growth factor-β (TGF-β), insulin like
growth factor-1 (IGF-1), IL-6, and keratinocyte growth factor (KGF) [303].

Several studies have found that tumors promote a constant influx of myelomonocytic cells
that express inflammatory mediators supporting pro-tumoral functions. Myelomonocytic
cells are key orchestrators of cancer-related inflammation associated with proliferation and
survival of malignant cells, subversion of adaptive immune response, angiogenesis, stroma
remodeling, and metastasis formation [304].

Tumor-derived factors, which cause sustained myelopoiesis, accumulation, and functional
differentiation of myelomonocytic cells, provide an essential support for the angiogenesis
and the stroma remodeling required for tumor growth [305,306]. In addition, it has long
been known that tumor growth is promoted by tumor-associated macrophages (TAM), a
major leukocyte population present in tumors [65,307-310]. Accordingly, in many but not
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all human tumors, a high frequency of infiltrating TAM is associated with poor prognosis. A
model by which macrophages promote tumor invasion and metastasis includes expression of
their proteolytic activity and subsequent breakdown of the basement membrane around the
preinvasive tumors, thereby enhancing the ability of tumor cells to escape into the
surrounding stroma [311]. In lung cancer, for example, TAM may favor tumor progression
by contributing to stroma formation and angiogenesis through their release of platelet-
derived growth factor, in conjunction with TGF-β production by cancer cells [310]. TAM
produce several MMPs, such as MMP-2 and MMP-9, that degrade proteins in the
extracellular matrix and also produce activators of MMPs, such as chemokines.

5. Conclusion
This review clearly implicates the role of ROS in different phases of tumorigenesis.
Therefore, targeting redox-sensitive pathways and transcription factors offers great promise
for cancer prevention and therapy. Numerous agents have been identified that can interfere
with redox cell signaling pathways [9,312,313]. These include neutraceuticals derived from
fruits, vegetables, spices, grains, and cereals. They have been shown to suppress
tumorigenesis in preclinical models. Whether these agents can inhibit tumor growth in
patients remains to be elucidated.
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6. Abbreviations

Akt AKT8 virus oncogene cellular homolog

AP-1 activator protein-1
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APC adenomatous polyposis coli

ATF-2 activating transcription factor-2

Bad Bcl-XL/Bcl-2-associated death promoter

BH3 Bcl-2 homology3

BRCA1 breast cancer susceptibility gene 1

CDKN-2 cyclin-dependent kinase inhibitor-2

COX-2 cyclooxygenase-2

CCL5 CC chemokine ligand 5

CSCs cancer stem cells

Cu-ZnSOD copper-zinc superoxide dismutase

CXCL5 CXC chemokine lix 5

CXCR4 CXC chemokine receptor 4

ECM extracellular matrix

EC-SOD extracellular-superoxide dismutase

eNOS endothelial nitric oxide synthase

ERK/MAPK extracellular signal-regulated kinase/ mitogen-activated protein kinase

FGF fibroblast growth factor

HIF-1α hypoxia inducible factor-1α

Flk1/KDR fetal liver kinase 1/ kinase insert domain receptor

GPx glutathione peroxidase

GSH glutathione

GSSG glutathione disulphide

GTPase Rac1 guanosine triphosphatase Rac1

HER-2 human epidermal growth factor receptor-2

HGF/SF hepatocyte growth factor/ scatter factor

HIF-1α hypoxia-inducible factor-1α

hMLH1 human mutL homolog 1

HMOX-1 heme oxygenase-1

4-HNE 4-hydroxynonenal

H2O2 hydrogen peroxide

Hsp27 heat shock protein27

ICAM-1 intercellular adhesion molecule-1

IGF-1 Insulin like growth factor-1

IκBα inhibitor of κBα

IL-1 interleukin-1

IL-6 interleukin-6
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IL-8 interleukin-8

iNOS inducible nitric oxide synthase

IFN interferon

JNK c-Jun N-terminal kinase

c-JUN cellular Ju-nanna

KGF keratinocyte growth factor

Keap1 Kelch-like ECH-associated protein 1

LPS lipopolysaccharide

MDR multidrug-resistance

MDM2 murine double minute 2

MKPs mitogen-activated protein kinase phosphatases

MMPs metalloproteinases

Mn-SOD manganese-superoxide dismutase

MRP1 multidrug resistance-associated protein 1

Myc avian myeloblastosis virus oncogene

MyD88 myeloid differentiation primary response gene 88

NAC N-acetylcysteine

NADPH reduced nicotinamide adenine dinucleotide phosphate

NFAT nuclear factor of activated T cells

NF-κB nuclear factor κ B

NO nitric oxide

Nox NADPH oxidase

Nrf2 NF-E2 related factor-2

8-OHdG 8-hydroxydeoxyguanosine

p27Kip1 p27 kinase inhibitor protein

PDGF platelet-derived growth factor

PGP P-glycoprotein

PI3K phosphoinositide 3- kinase

PKB/Akt protein kinase B/AKT8 virus oncogene cellular homolog

PMA phorbol 12-myristate 13- acetate

PPAR-γ peroxisome proliferator-activated receptor-γ

PTEN phosphatase and tensin homolog deleted from chromosome 10

Prx peroxiredoxins

RAS rat sarcoma viral oncogene

RAF murine sarcoma 3611 oncogene

Rb retinoblastoma protein
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ROS reactive oxygen species

RNS reactive nitrogen species

SDF-1/CXCL12 stromal cell derived factor-1/ CXC chemokine ligand 12

SOD superoxide dismutase

SRC steroid receptor coactivator

STAT3 signal transducer and activator of transcription 3

TAM tumor-associated macrophages

tBHQ tertiary-butylhydroquinone

TGF-β transforming growth factor-β

TLR toll-like receptor

TNF tumor necrosis factor

TSP-1 thrombospondin-1

TrxR thioredoxin reductase

VEGF-A vascular endothelial growth factor-A

Wnt wint
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Figure 1. Schematic representation of various activators and inhibitors of reactive oxygen
species production
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Figure 2. Schematic representation of various transcription factors that are modulated by
reactive oxygen species
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Figure 3. Model of a balance between pro-oxidants and anti-oxidants
Under normal conditions, anti-oxidants outbalance pro-oxidants, but under oxidative
conditions, pro-oxidants prevail over anti-oxidants, which can lead to many inflammatory
diseases including cancer.
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Figure 4. Model of the sensitivity of normal cells versus cancer cells to reactive oxygen species
Normal cells are hypersensitive to ROS if not adequately protected by anti-oxidant
mechanisms, which may lead to cancer formation. Cancer cells, on the other hand, have
upregulated antioxidant mechanisms (glutathione, SOD, catalase, and others) that will
protect them against ROS, as can be observed in, for example, the case of radioresistance.
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Table 1
A partial list of diseases that have been linked to reactive oxygen species

Disease Reference

Acute Respiratory Distress Syndrome [16]

Aging [17]

Alzheimer [18,19]

Atherosclerosis [20]

Cancer [21-23]

Cardiovascular Disease [24,25]

Diabetes [26]

Inflammation [27]

Inflammatory Joint Disease [28]

Neurological Disease [29]

Obesity [30,31]

Parkinson [32,33]

Pulmonary fibrosis [34,35]

Rheumatoid arthritis [36]

Vascular Disease [37,38]
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Table 2
A partial list of cancers that have been linked to reactive oxygen species

Cancer Reference

Bladder Cancer [39]

Brain Tumor [40]

Breast Cancer [41]

Cervical Cancer [42]

Gastric (Stomach) Cancer [43]

Liver Cancer [44]

Lung Cancer [45]

Melanoma [46]

Multiple Myeloma [47]

Leukemia [48]

Lymphoma [49]

Oral Cancer [50]

Ovarian Cancer [51]

Pancreatic Cancer [52]

Prostate Cancer [10]

Sarcoma [53]
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Table 3
A partial list of signaling pathways linked to reactive oxygen species

Signaling intermediate Reference

AHR [98]

AP-1 [99,100]

ATM [101]

cAMP [102]

cAMP-dependent PKA [103]

CDK5 [104]

Chemokine [70]

c-myc [99]

CREB [103]

Cyclins and Cell Cycle Regulation [105]

Cytokine Network [66]

DNA Methylation [106]

DNA Repair Mechanism [107]

EGF [108]

eNOS [109]

ERK [110]

Fas [111]

FOXO [112]

HIF-1α [113]

HO-1 [114]

IL-10 [115]

iNOS [109]

Integrin [116]

Interferon [117]

JAK/STAT [118]

JNK [119]

MAPK [110]

Mismatch Repair [120]

mTor [121]

NAD(P)H quinone oxidoreductase 1 [122]

NF-κB [123]

Nfr2 [124]

PI3K/Akt [125]

p38 [126]

p53 [127,128]

PKC [129]

PPARγ [130]

PTEN [131]

PTPs/PTKs [132]
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Signaling intermediate Reference

Sp1 [133]

TNF [5]

VEGF [134]

WNT [135,136]
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